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SUMMARY 
This paper considers the flow due to a jet spreading out over 

a plane surface, either radially or in two dimensions. Solutions 
of the boundary layer equations are sought, according to which 
the form of the velocity distribution across the jet does not vary 
along its length. For laminar flow,. such a similarity solution is 
obtained explicitly. For turbulent flow, an eddy viscosity is 
introduced, and it is eventually seen that complete similarity is 
not attainable, but that confident predictions can nevertheless be 
made about the nature of the velocity distribution and the rate of 
growth of the wall jet. 

1. INTRODUCTION 
When a jet of air strikes a surface at right angles and spreads out radially 

over it, it forms what will be termed a wall jet. Such a flow is produced by 
the downwards-directed jet from a vertical-take-off aircraft spreading out 
over the ground, or by a jet of water from a tap falling into a partly full sink 
and spreading out over the bottom. It should be noted that the flow due 
to a jet of water falling into an empty sink is in a quite different category, as 
then the condition at the free surface is that the pressure is constant; for 
a wall jet, as for a free jet, the corresponding condition is that the radial 
velocity component falls to zero at the outer edge of the jet. 

Plane wall jets may also arise. If the water levels are different in two 
sections of a canal, separated by a sluice, and if the sluice is slightly raised, 
the flow into the section with the lower water level will take the form of a 
wall jet. Alternatively, if a plane jet impinges on a fixed plate parallel to 
the direction of flow, a wall jet will be produced on each side of the plate. 

The theory of such wall jets, radial or plane, laminar or turbulent, forms 
the subject of this paper. It does not appear to have received attention 
previously. The appropriate boundary layer equations are set up, and a 
search is made for a similarity solution, in which the form of the velocity 
distribution across the jet does not vary along its length. This is a familiar 
procedure in boundary layer theory. Two similarity exponents, giving the 
variation with distance of the maximum velocity and the jet width, have 
to be determined, and one relation between them is obtained from the 
boundary layer equations themselves. In the corresponding problem for 
a free jet, a second relation is deduced from the constancy of momentum 
flux, and for a boundary layer the second relation is even simpler in form, 
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since the velocity must vary in the same manner as does the known external 
flow. For a wall jet, neither of the principles can be applied. I t  is shown 
in $ 2 that the solution depends on an eigenvalue problem, which for laminar 
flow is satisfactorily solved in $$2 and 3. The calculation of the jet profile 
is carried out in $4, and it is found possible to perform the integrations 
analytically. The same velocity distribution applies for both radial and 
plane wall jets, a fortunate circumstance which occurs in all the cases 
considered in this paper, and greatly shortens the work. 

In  most practical examples, the wall jet will be turbulent. The attempts 
in $55-9 at predicting its form are all based on the idea of replacing the 
molecular viscosity by an effective eddy viscosity, and requiring this to 
vary in a plausible manner. The first attempt, in $5, makes use of the 
hypothesis for free turbulent flow due to Prandtl(1942), according to which 
the eddy viscosity is constant across the breadth of the jet. The velocity 
profile thus derived is shown to be identical with that in the laminar case, 
and further implications of this result are noted. Near the wall, this solution 
is not in accord with preliminary experiments (Bakke 1956), and in $ 6  
a second attempt is made, with an eddy viscosity as required to satisfy the 
law due to Blasius (1913) for flow in a pipe. The solution again is calculated 
without difficulty, and might be expected to be accurate in the region near 
the wall. A more realistic procedure is to postulate an eddy viscosity based 
on Blasius’s law near the wall and Prandtl’s hypothesis further out. This 
implies that complete similarity is no longer possible. Also, the eigenvalue 
problem to determine the similarity exponents, which in the earlier attempts 
was solved by a simple extension of the analysis for a laminar wall jet, has 
t o  be considered afresh. In spite of these difficulties, in $9 7-9 an analysis 
is carried out which results in definite predictions as to  the velocity dis- 
tribution and the values of the similarity exponents, as slowly varying 
functions of the Reynolds number. As in all problems involving Prandtl’s 
hypothesis, the value of a single constant has to be assigned from experimental 
observations. The final results are put forward with some confidence in the 
belief that they do correctly predict the main features of an actual turbulent 
wall jet. 

In  what follows, the theory is developed for the case of a radial jet, as 
being of the greater practical interest. The modifications required to make 
the analysis applicable to a plane wall jet are only slight, and are noted at 
the end of each section. 

2. SIMILARITY SOLUTIONS 

We now consider the equations governing a radial laminar jet flowing 
over a plane wall. On the boundary layer approximation, the pressure is 
everywhere uniform, and the momentum equation is 

au au a2u 
ax ay ay2’ 

u - + v -  = v -  
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where x and y denote distances along and normal to the wall, x being 
measured from the jet axis, u and ZI the corresponding velocity components, 
and v the kinematic viscosity. The equation of continuity is 

a(xu) a(xZI) -+- = o ,  ax ay 
and hence there is a Stokes stream function +, satisfying 

(2.3) 

The boundary conditions are 

u = v = O  aty=O, u+O asy+co. (2.4) 
Consider the possibility that there shall be a similarity solution of these 

equations, with u cc xa, and the jet thickness 6 cc xb.  The two sides of (2.1) 
will vary with x in the same manner if 

I n  other boundary layer problems, a second relation between a and b is 
obtained from the general nature of the flow. Thus for a boundary layer 
in a stream U = cxm, it is at once clear that a = m, and for a free jet, constancy 
of momentum flux gives the second relation. For a wall jet, there is no help 
from the boundary conditions, momentum is not conserved, and there is 
no obvious quantity to consider instead. Indeed + = 0 satisfies both 
equations and boundary conditions. This suggests that only for particular 
values of a and b will non-trivial solutions arise. 

a+2b = 1. (2.5) 

For convenience, we introduce non-dimensional variables by writing 

u = U i ,  v = UG, x = vG/U, y = vr/U,  + = v2$/U, (2.6) 

where U is a constant velocity. Using (2.5), we write - * = .””f(q), 
where -q = (2- b)jX-b. 
Then 1 = (2-b)2-2bff(-q), 

f” +ff” + OIf’2 = 0, 

and equation (2.1) becomes 

where u = (2b - 1)/(2 - b). (2.8) 

The boundary conditions (2.4) require that 

(2.7) 

f(0) =f’(O) = 0, f’( co) = 0. (2.9) 
For any u, there are solutions of (2.7) with ~ ’ ( c o )  = 0. We now 

investigate the possibility that, for such a solution, f and f’ shall both be 
zero at some finite q, so that (2.9) may be satisfied, with a suitably chosen 
zero of 7. Integrating (2.7) between the limits -q and co, we obtain 

f”+#’-(OI-l)g = 0, (2.10) 

where 

2 T 2  
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Note that g is certainly positive. Multiplying (2.10) byf' and integrating 
again, we have 

&f2-fg+(ci-2) Jafg dq = 0. (2.11) 
rl 

If, at the first zero off' to be encountered as q decreases, f is also zero, then 
since the integral in (2.11) is certainly positive, this equation requires that 
a = 2. Equations (2.5) and (2.8) now show that 

a =  - 3  2, b = 5  4' (2.12) 

Unique values have thus been found for the similarity exponents. The 
only assumption in the argument, that f' is nowhere negative, i.e. that 
there is no reversed flow, is clearly acceptable on physical grounds. 

For a plane wall jet, the equation of continuity au/ax+av/ay = 0 is 
satisfied by introducing a stream function t,b such that u = a+/ay, 
v = - at,b/ax. On writing 7 = t,b/v = xl-y(v), where -q = (1 - b)?', we 
obtain (2.7) precisely as before, where now ci = (2b- 1)/(1 -b). The 
proof that cc = 2 is unchanged, and hence, for a plane wall jet, 

a =  -L  2, b = 2. (2.13) 
The equations being identical, the velocity distributions across the jet are 
the same in the radial and plane cases. 

Before proceeding further, we may note some important implications 
of (2.10). If f and f" are to vanish simultaneously, with f > 0, this 
equation shows that a = 1. These are precisely the conditions which 
hold for a free jet (where &lay = 0 on the centre line y = 0), and (2.7) 
with GI = 1 is indeed the equation for the velocity distribution in a plane 
free jet, found by Schlichting (1933) and Bickley (1937). The above 
arguments show that this same velocity distribution applies also to the 
similar state of a radial free jet, as would occur when a radial wall jet had 
passed beyond the edge of a finite circular plate. For here, too, the equation 
must be of the same form as (2.7). The similarity exponents are found 
from (2.8) to be a = - 1, b = 1. These results for a radial free jet are in 
agreement with those of Squire (1955). A practical example of a radial 
free jet occurs, approximately, in the circular grilling burner of a gas cooker. 
The fact that, for a free jet, (2.10) leads to the same values of the similarity 
exponents as does a consideration of momentum flux, suggests that it may, 
after all, be possible to deduce the values for a wall jet by analogous 
considerations. This is indeed the case, as will be shown in the next section. 

- 

3. EXTERIOR MOMENTUM FLUX 

Our aim is to deduce an integral relation for a radial laminar wall jet, 
from the basic equations (2.1) to (2.4). Multiply (2.1) by x and integrate 
with respect to y between the limits y and 00, using the condition that 
21 -+ 0 as y -+ 00. By (2.2), 
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and so we obtain 

Multiplying by xu, and integrating with respect t o y  between the limits 0 
and co, we then have 

ax lom XU{ lUm xu2 dy } dy - lom luy xu2 dy}  dy - 
m m 

0 0 
- 1 x2vu2 dy + [ ~ v x W ]  = 0. (3.2) 

From the continuity equation, the second term of (3.2) is 

Now at y = 0, u = v = 0, and so (3.2) reduces to 

2 ax 1,“ xu{ Im xu2 dy} dy = 0, 

or F = jr XU{ lUm xu2 d y )  dy = constant. (3.3) 

Physically, this equation may perhaps be interpreted as saying that the 
flux of exterior momentum flux is constant, but this is hardly a familiar 
concept. The close similarity between the types of expression in equations 
(2.11) and (3.2) may be noted. In  the case of a similarity solution, (3.3) 
shows at once that 

and, taken together with (2.5), this leads to the values of a and 6 already 
given in (2.12). If there is reversed flow, it is possible that F is zero, and 
in this case the deduction (3.4) cannot be made. So here, as in $2, there 
is the mathematical possibility of solutions with reversed flow, for some 
other values of the similarity exponents. 

The arguments leading to the constancy of F are not dependent on the 
velocity profiles being similar. The similarity solution requires an infinite 
velocity and zero jet width at x = 0, so in an actual wall jet there must 
be a region where the velocity distribution differs from its final similar 
state. Equation (3.3) gives valuable information about the state of affairs 
in this region. 

We may note that a rough estimate of the magnitude of F may be 
deduced from a knowledge of conditions in the impinging free jet, by 
writing 

3a+2b+2 = 0, (3.4) 

F = lom xu{ ,,” xu2 dy}  dy = u.,b xu{ 1: xu dy}  dy 
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where u* is a velocity typical of that in the jet. 

F = $(typical velocity) x (volume flow per radian)2. 
Neither the volume flow nor the magnitude of the fluid velocity will alter 
greatly when the jet is deflected on striking the wall, so that the value of 
(3.54, estimated from conditions in the impinging jet, provides a measure 
of F in the wall jet. 

For plane flow, the analysis of this section is unchanged, except that 
the x's are omitted and the final result, 

Thus 

F = lom u( ,," u2 dy }  dy = constant, (3.6) 

(3.7) 
leads to 

again agreeing with the previously obtained result. 
If the flow is turbulent, momentum flux arguments still hold for a free 

jet, but for a wall jet F will remain constant only under certain special 
assumptions about the nature of the turbulent stresses. These matters 
will be discussed in later sections. 

3a + 2b = 0, 

4. VELOCITY DISTRIBUTION 

The expression for the stream function given in $2, with the value 
b = 2 found in (2.12), was $ = (~~ux."/U)~/4f(rj), where 7 = % ( ~ ~ / U u x ~ ) ~ i ~ y ,  
and hence u = $(u3/Uux3)9"rj). The equation for f was shown to be 

f + f f " + Z f Q  = 0 (4.1) 
with boundary conditions f ( 0 )  = f ' ( O )  = 0, f'( co) = 0. 

parts, and the remaining two form a perfect differential. 
Multiply the equation by f. The first term may now be integrated by 

Hence 

fy-$p+f2y= 0, ( 4 4  

(4.3) 

since f'( co) = 0. Multiply by f-3/2, and integrate again. Thus 

f1/2f' + $f3i2 = constant. 

Now if f o ( q )  .is a solution of (4.1), so also is fl(rj) = A f o ( A 7 ) ,  for any 
constant A, and fl satisfies the boundary conditions if f o  does. But the 
effect of selecting f l  instead of f o  as the solution for substitution into the 
expressions given above for #, 7 and u is precisely the same as that of 
changing the value of the arbitrary constant velocity U to U/A4. Hence, 
without loss of generality, we may select the solution with f (  co) = 1, and 
take the constant in (4.3) to have the value 8. Write f = g2; thenf' = Zgg', 
and (4.3) becomes 

which gives on integration 
g' = 9(1-g3), (4.4) 
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The values of 7, f andf’ corresponding to given values of g may now 
be tabulated. The variations with 7 off andf’ are illustrated in figure 1. 
The main properties of the velocity distribution are easily calculated 
directly. Thus, the shearing stress at the wall is related tof”(0) = i, and 
the maximum value off’ is 2-5/3 = 0.315, occurring at the point at which 
f =  2-413 + 0.397. 

Figure 1. Laminar wall jet. Variation of mass flux (f) and velocity (f’) with distance 
from the wall (7). 

The arbitrary velocity U may be eliminated by introducing the quantity 
F of 5 3. It is easily verified that 

Hence we may write 

The skin-friction T,, is given by 
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For a plane wall jet, the expressions corresponding to (4.6), (4.7) and 
(4.8) are 

5. PRANDTL’S HYPOTHESIS 

In  most practical situations, the wall jet will be turbulent, and we now 
investigate how the foregoing analysis must be modified to apply in this 
case. If we introduce the concept of an eddy viscosity E ,  the boundary 
layer equation (2.1) becomes 

au au 
u - + v -  = - ax ay ; (€$) 

where u and v now denote the components of the mean velocity. The 
continuity equation (2.2) and the boundary conditions (2.4) are unchanged. 

Some assumption must be made about the behaviour of E. The simplest 
and most convenient one, which has proved satisfactory in describing free 
turbulent boundary layer flows, is the hypothesis due to Prandtl (1942), 
that the eddy viscosity is constant across the layer, and is proportional to 
the product of the maximum mean velocity and the width of the layer. 
A wall jet would appear to be half-way between a free flow and a wall flow, 
so it is not unreasonable to adopt Prandtl’s hypothesis as a first attempt. 

If there is to be a similarity solution of (5.1), with u cc xa and 6 cc xb, 
we then require that E cc x@+b, and the two sides of (5.1) will vary with x 
in the same manner if 

In the arguments of $ 3  relating to exterior momentum flux, v has to be 
replaced by E ,  but since this is a function of x only, the analysis applies 
unchanged. Once aga.in, F = constant, whether or not there is similarity. 
For a similarity solution, (3.4) holds as before, showing that 

T o  study the velocity distribution, introduce the non-dimensional variables 
(2.6), and let 

where h is a constant, to be determined later. Then if we write 

b =  1. ( 5 4  

(5.3) 

= &-wV, (5.4) 

a =  - 4  
3’ 

(5.5) 
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(5.1) shows that f satisfies f +ff” + 2f2 = 0, with boundary conditions 
f(0) = f’(0) = 0, f’( co) = 0, precisely as for the laminar case. The solution 
of $4 is still applicable, and thus, on Prandtl’s hypothesis, the velocity 
profile is identical in the laminar and turbulent cases. This result follows 
at once from the integral arguments of $ 2, as soon as it is established that the 
equation is of the same basic type in the two cases, and it applies equally 
well to a plane turbulent wall jet. 

For a plane free jet, it was shown by Gortler (1942) that, on the basis 
of Prandtl’s hypothesis, the velocity profile of a turbulent jet is the same 
as that of a laminar one. This again is an immediate deduction from the 
arguments of $2. Further, a radial free jet, as described in $2, would also 
have this same velocity profile in either laminar or turbulent flow. For all 
these jets, the use of Prandtl’s hypothesis is well justified. 

It would indeed be satisfactory if this simple approach sufficed to 
describe a turbulent wall jet. However, it is found by experiment (Bakke 
1956) that the velocity gradient near the wall is much greater than in the 
velocity distribution of figure 1. Consequently, we shall not proceed to 
set out further details of the solution based on Prandtl’s hypothesis. We 
merely note that, in this method, the only undetermined quantity is the 
constant X introduced in (5.4), and this would be chosen to give the best 
agreement with experiment, as in other problems where Prandtl’s hypothesis 
is used. 

6. EFFECT OF THE WALL 

Once it is conceded that there is large velocity gradient near the wall, 
the idea of a free turbulent flow is seen to be an inadequate one. It becomes 
clear that the friction at the wall is a decisive agency, and must be given a 
prominent place in any theory. We shall retain the concept of an eddy 
viscosity, but shall require it to vary in a suitable manner across the breadth 
of the wall jet. 

We may make use of the empirical formula due to Blasius (1913), based 
on a study of turbulent pipe flow, in the form 

114 
T~ = 0.0225~ U2( &) , 

where U is the maximum velocity and a the radius of the pipe. The formula 
is often written with the mean velocity and the pipe diameter in place 
of U and a ; this merely involves a modification of the numerical coefficient. 
Since T~ is governed by conditions near the wall, it has been argued that 
U and a in (6.1) may be replaced by u and y, so that the equation becomes 

T~ = 0*0225pu2(&) 114 . 

This may be expected to hold near the wall in any turbulent boundary layer 
flow, outside the viscous sublayer. A discussion of equation (6.2), first 
discovered by Prandtl, is given by Schlichting (1955, p. 404). He shows 
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that the formula is adequate at Reynolds numbers up to lo5. This power 
law expression is easier to apply in our present theory than is the logarithmic 
relation which is theoretically more acceptable, and its accuracy should 
be quite adequate for our purposes. At higher Reynolds numbers a formula 
similar to (6.2), with a suitably modified exponent, might be used. 

The shearing 
stress T = E &lay has a finite non-zero value at the wall and hence, for 
fixed x, 

The assumption we shall now make is that E is proportional to u6, in 
accordance with (6.3). At first we shall assume that this relation holds 
throughout the whole width of the jet, though later we shall apply it only 
in a limited region near the wall. Thus, we choose 

where m is as yet unspecified. The main reason for choosing E to be a 
function of u rather than of y, is that in consequence 17 does not appear 
explicitly in the equations, but the behaviour is also satisfactory in that E 
will not continue to rise beyond the velocity maximum. An additional 
and rather amusing point is that the exterior momentum flux arguments 
of $3 still apply in this case. The last term of equation (3.1) becomes 
mxu68u/8y, and hence the last term of (3.2) is replaced by &mx2u8, which 
vanishes at the wall and at the outer edge of the jet. Consequently 
equations (3.3) and (3.4) remain true. However, it is not really plausible 
to consider that this form for E is applicable in the outer parts of the jet, 
where the velocity is falling to zero again. 

Consider the conditions for a similarity solution of the boundary layer 
equation (S.l), in which u cc xa, 6 cc xb.  Blasius's formula (6.2) requires 
that T~ cc u7346-1'4, and hence 

The two sides of (5.1) will depend on x in the same manner if 

Equation (6.2) implies that, near the wall, u cc yl". 

E cc y6'7 cc u6. (6.3) 

E = m(x)u6, (6.4) 

(6.5) 

a+Sb = 4. (6.6) 

E cc u3148314 cc x3(a+b)/4. 

Introduce the non-dimensional variables (2.6) and, in accordance with the 
above results, let 

5-46-- 
7 = Tyx--b, 

and E = A,&3-30f'6y, (6.8) 
where h and A are constants. The reasons for the introduction of the 
second constant will appear in the next section. Equation (5.1) then gives 

where a = (56- 4)/(5-46). (6.10) 
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The boundary conditions are f' cc as 7 -+ 0, f'(7,) = 0, where 7, is 
the value of 7 at the outer edge of the jet. As a result of the peculiar choice 
of E, yrn is finite, as will be seen later. From (6.5) and (6.10), we have 

4 + 5 u  b =  - 
5+4u'  5 + 4 u '  

9u 
a = .  -- (6.11) 

The integral arguments of $ 2  may be applied as before to show that 
01 = 2, a result which also follows from the considerations of exterior 
momentum flux given above. With this value, (6.11) shows that 

u = - 1.38, b = 1.08, (6.12) 

By a suitable choice of h, and equation (6.9) may be integrated directly. 
we may take A = 1, and the equation then becomes 

d - (f'"f") + f f "  + 2 p  = 0. 4 
(6.13) 

Multiplying by f and integrating, we obtain 

ff 'y - i f l a  + f 2f' = 0, (6.14) 

the constant being zero in view of the required behaviour off near 7 = 0. 
Multiply (6.14) by 7f-l5i8, and integrate again, 

f-'/Sf'7 + f 9~ = constant. (6.15) 

Choose the constant so that f = 1 when f' = 0. Solutions for other 
values of the constant are then expressible as X'f(X-57), for some constant 
X. We then have 

(6.16, 

It is convenient to write g(5) = f 7 / 8 ,  where ( = g(?)l/'q. 
then shows that 

Equation (6.15) 

g'7 = 1 -p, 

and hence (6.17) 

This integral was computed numerically, and at each stage the corre- 
sponding values for f ,  f '  and 7 were calculated. The value of 4 at the edge 
of the jet, g = 1, is expressible as a beta function, and thus a useful check 
was made on the accuracy of the work. The variations with 7 off  andf' 
are illustrated in figure 2. The solution is satisfactory up to the velocity 
maximum, but the rapid fall of velocity in the outer region, a consequence 
of the assumption E cc u6, is quite unacceptable. A more realistic assumption 
is that E is constant in the outer part of the jet, in accordance with Prandtl's 
hypothesis. We now consider how this may be achieved. 
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Figure 2. Turbulent wall jet, eddy viscosity proportional to u6. Variation of mass 
flux (f) and velocity (f’) with distance from the wall (7). 

7. MATCHING OF SOLUTIONS 

The first thing to realize is that, if the inner part of the wall jet is to be 
governed by Blasius’s formula, and the outer part by Prandtl’s hypothesis, 
complete similarity is no longer possible. For, as functions of x, E cc R3l4 
in the inner layer, as shown in (6.5), and E cc R in the outer layer, where 
R = uS/v is the Reynolds number. With increasing x, u decreases rather 
faster than 6 increases, and hence R decreases slowly. Consequently the 
velocity profile must change gradually as the jet develops, the inner layer 
occupying a progressively larger part of the jet width. This is not dependent 
on the precise forms selected for the eddy viscosity in the parts of the jet 
near and far from the wall. Any method which relates the inner part to 
the presence of the wall, and the outer part to free turbulent flow, will give 
the same conclusion. 

However, the ratio of the eddy viscosities in the outer and inner parts 
of the layer varies only as the fourth root of the slowly changing Reynolds 
number, and we shall ignore this relative variation in seeking to derive a 
solution. A process of matching inner and outer solutions will then enable 
us to estimate the Reynolds number to which a particular matched profile 
is appropriate. It is hoped by this means to predict the main features of 
an actual turbulent wall jet. The assumptions in regard to the eddy viscosity, 
on which the whole method depends, are themselves of such dubious validity 
that it is hardly justifiable to try to develop any more precise procedure at 
this stage. 

We now consider the equations for the inner and outer parts of the jet. 
For the inner layer, equations (6.5) to (6.11) continue to apply unchanged. 
In the outer layer we retain the same variables, but, in place of (6.8), we 
write - 

E = AX*%, (7.1) 
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which is proportional to R3l4, instead of being proportional to R as indikated 
by Prandtl's hypothesis., This is the price that must be paid if we are. 
still to have a solution in terms of the similarity variables. The equations 
are 

f;l' + f O f i  + uf;2 = 0, (7.3) 

where the suffixes denote the inner and outer layers respectively. The 
values of a and b, the similarity exponents, are given as functions of a by 
(6.11). + constant as r]  -+ 0, 
andfi( a) = 0. Clearly certain further conditions must hold at the junction 
of the inner and outer layers. The value a = 2 was determined in previous 
cases by exterior momentum flux arguments. These are no longer helpful, 
so u remains arbitrary. Indeed it is the variation of a along the jet length 
which represents the gradual change of jet profile, as different values of cc 
will be appropriate at different Reynolds numbers. 

Details of the calculations involved in the integration of (7.2) and (7.3), 
for general values of a, are deferred to the next section. For the present, 
we merely assert that such solutions are available. In  (7.2) it is convenient 
to write 

so that the equation becomes 

As boundary conditions, we have 

f 2 ( r ] >  = Al/Yl(r])Y (7.4) 

(7.5) 
d 
- (f;y;) +f& + uf42 = 0. 
d.r 

Now if one solution of ( 7 4 ,  with the correct behaviour near r ]  = 0, has been 
found as f2(q), then, as in $6, the general solution can be written as 
J17f2(X-5r]), for some constant X .  The corresponding solution of (7.2) is 

fl(r]) = A--1/5X7f2(X-5r]). (7.6) 
The conditions to be satisfied at the junction between the inner and 

Suppose that the join is to be at the 
Thus at the 

outer layers will now be considered. 
velocity maximum, and here + and u are to be continuous. 
velocity maximum r]  .= qm, 

f" - - f"  =f" - - 0 , fo = fl = A--1/5X7f2, fi = f; = A-1/5X2 f (7.7) 
Since the solutions fo and f2 are known, the values of A and X can be found 
at once. which is an 
apparent drawback. However, the shearing stress is continuous, being 
zero on each side of the join. 

The eddy viscosity in the outer layer may now be determined as follows. 
Blasius's formula (6.2) shows that, near the wall, 

The eddy viscosity is discontinuous at r ]  = 

- = E -  au = 0 . 0 2 2 5 ~ ~  ($)1'4. 
P aY 
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With’the expressions of 36, this takes the form 

AXf;4f;‘(v f ;)li4 = 0.0225 

for small q. Iff; 7-l” --f D as q + 0, (7.9) gives 
(7.9) 

AXD21/4 = 0.1575, (7.10) 

and if f; q-1/7 -+ E as q --f 0, (7.6) shows that D = A-1/5X9/7E, and hence 
(7.10) becomes 

= 0.1 575AlPoX-27/4,73-21/4 

(7.11) 

from (7.6), where the suffix m denotes the value at the velocity maximum. 
All the terms of the right-hand side of (7.11) are supposed known, for any a, 
and thus X is determined. Now, according to Prandtl’s hypothesis, in the 
outer layer, 

E = KUm6t, (7.12) 

where urn is the maximum velocity, 6, a typical measure of the jet width, 
and K a universal constant; i.e. one which should not depend on u. The 
jet Reynolds number may be defined, more precisely than previously, as 
R = u,S,/v, and it now follows from (6.7) and (7.1) that 

h = K(Tt fim)’/‘Rli4, (7.13) 
where qt is the value of 9 corresponding to 6,. Hence, from (7.11), 

(7.14) 

8. INTEGRATIONS AND RESULTS 

The integration of equations (7.3) and (724, for general values of a, 
will now be considered. As in $4, we may choose the solution of (7.3) for 
which fo( co) = 1. A series expansion, valid for large values of 7, is readily 
obtained in the form 

fo (q )  = 1 - e-q + a( 1 + a)e-2? - &( 1 + a)(5 + 4~)e-~T + 
+k8( l+a)(34+53a+21a2)e4q-- ..., (8.1) 

where the coefficient of 19 has been arbitrarily taken as unity. This is 
equivalent to making a suitable choice of the zero of q. From the series, 
f,, and its derivatives were calculated at a suitable set of values of q, and 
the solution of (7.3) was then extended to smaller values of q by numerical 
integration, until the zero off; was passed. The values of fom,  f i m  and qt 
were then estimated, yt being chosen as the interval between the point at 
which fi = f& and the point at which j i  = if;,. This procedure was 
carried out for u = 1.1, 1.2, 1.4, 1-6 and 1-8. The solution for u = 2 was 
found in 34, and, for 01 = 1, equation (7.3) is that corresponding to a plane 
free jet, with solution fo = tanhJq. The values of fom,  fhVL and qt thus 
determined are shown in figure 3, and lie on smooth curves, considered 
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as functions of a. From this figure, the values corresponding to any 
required u in the range can be read off immediately, to sufficient accuracy. 

A point which emerges from the integrations, is the great insensitivity 
to the value of u of the velocity profile in the region beyond the velocity 
maximum. I n  figure 4, where f&,& is plotted as a function of (q - ~ ~ ) / q ~ ,  

045 

6,  

0.4 

035 

0.3 

Figure 3.  Results for a turbulent wall jet. Values of mass flux (fm) and velocity 
Also thickness of the inner layer ( 7 3  and (f&) at the velocity maximum. 

outer layer (qt). 

Figure 4. Comparison of velocity profiles. cy. = 1 --_- cy. = 2. 

the curves for the extreme values u = 1 and a = 2 are seen to be so close to 
each other that no experiment could be expected to differentiate between 
them. Thus the outer part of the velocity profile of a laminar wall jet is 
virtually the same as that of a plane free jet. 
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For the inner part of the wall jet, we wish to determine the solution of 
(7.5) for which f 7-lI7 -+ constant as 7 -+ 0. This implies that fz fl/ji2 -+ & 
as 7 + 0. Also, at the velocity maximum, which is the farthest point to 
which the solution need be carried, fl = 0. Thus the second term of (7.5) 
is relatively unimportant compared with the third, throughout the range 
of integration. This suggests that a satisfactory approximation might be 
obtained by replacing the terrnfJl in (7.5) by 0fi2, where0 is a small positive 
constant, not depending on a. The equation then becomes 

d - (f;y;) + ( a  + 0)f;l” = 0. 4 
On writing f3(7) = Bf2(7), B5 = (2+ 0)/(. + 4, (8.3) 

d 
(8.2) becomes - (fjy;) + (2 + q f j 2  = 0, (8.4) 4 
in which a does not appear. The reason for the particular choice of the 
substitution (8.3) is that, by reversing the arguments given above, equation 
(8.4) may be replaced by (7.5) with a = 2. This is equation (6.13), of 
which the solution was found in $6. Denoting this known solution by 
f3(7), we obtain the required solution of (7.5) from (8.3), once the value 
of 0 has been chosen. 

The accuracy of this approach can be judged by a consideration of the 
extreme case a = 1.  Equation (7.5) can in this case be integrated twice 
immediately, to give 

7 2  2 2 -  77, 
where C is a constant. As previously, C may be chosen arbitrarily, and 
the solution of (8.5) for a general value of C is then expressible as Yy2( Y-57) 
for some constant Y. With C = $, equation (8.5) was integrated by a 
method of successive approximations. The following results were obtained. 

(8.5) ? f ’ + I f f ”  - c 

As 7 -+ 0, fi 7-1’7 -+ 1. 

When fj( = 0, f2 = 0.188, fi= 0.759, 7 = 0.269. 

These exact values may be compared with those we should deduce 
on the basis of the approximation developed above, using the relation 
f3(7) = BY7f,(Y-57), and the following properties of f3(7) which were 
found in the integrations of $6. 

When f :  = 0, f 3  = 0-479, f; = 1.091, 7 = 0.478. 
With a suitable choice of the two constants B and Y, (8.7) should give 
values similar to those of (8.6) for the four quantities concerned. The 
value of 7 agrees if Y = 1.121, and the values of B then required to give 
agreement of f 2 ,  fi and lim(f..7-1’7) are 1.140, 1.142 and 1.140 respectively. 

This is a remarkable justification of the ideas we have used. Equation (8.3) 
now shows that 0 = 0.07, a very acceptable value in view of the arguments 
leading to (8.2). 

j (8.7) 
As --z 0, f j  17-lj7 -+ 1.322. 

rt+O 
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Thus for the inner layer, as for the outer, the form of the velocity 
distribution is effectively independent of u. However, the velocity 
distribution for the whole wall jet does vary with a, due to changes in 
the relative scaling factors in the two parts. The gradient near the wall 
becomes steeper as u decreases. A typical velocity profile, that corre- 
sponding to ct = 1.4, is shown in figure 5. The width of the inner layer 

Figure 5. Velocity profile for a turbulent wall jet, a: = 14. 

is proportional to 7, = 1.09f0,/ji, and that of the outer layer to D, and 
so the velocity profiles corresponding to other values of M may readily be 
deduced from the curves of figure 3, where both 7, and qt are given. 

The results for the inner layer, obtained above, may now be inserted 
in (7.14) to give 

and on substituting the values for the outer layer, from figure 3, we obtain 
the results shown in table 1. 

1.4 
1.5 
1.6 

2 .o 

KR1 i6 

_____ 
0.415 
0.170 
0.102 
0.0707 
0.0530 
0.0417 
0.0287 
0.0215 

1.4x106 

5200 
1200 
380 
150 
33 
10 

4.1 x 104 
- 1.050 
- 1 ‘096 
-1.139 
- 1.178 
- 1.214 
- 1 ‘247 
- 1 ‘307 
-- 1.359 

1.005 
1.010 
1.015 
1.019 
1.023 
1.026 
1.033 
1.038 

Table 1 

The value of the constant K has to be determined empirically. 
Preliminary experiments (Bakke 1956), at a Reynolds number in the 

F.M. 2 u  
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neighbourhood of 5000, recorded a velocity profile in good agreement 
with that predicted for a = 1-3. This indicates that K = 0.012 is an 
appropriate choice, and the corresponding values of R are also shown in 
table 1. It may be noted that this value of K is approximately one-half 
of that found to be appropriate for a circular jet, and one-third of that for 
a plane free jet. More accurate experiments might indicate a modified 
value to be preferable. The extreme insensitivity of a to the value of the 
Reynolds number powerfully supports the assumption of approximate 
similarity, on which our whole theory has been based. 

Summing up, table 1 represents our main conclusions in regard to the 
behaviour of a turbulent wall jet, and it may be hoped that these would 
not prove unduly sensitive to changes in our assumptions as to the nature 
of the turbulent shearing stress. The predicted velocity distribution is 
given by figure 5, with suitable scaling of the inner and outer layers as 
discussed above. The similarity exponents, specifying the ratio of change 
of the maximum velocity and the jet width, are given as functions of a by 
equation (6.11); a few comments on the accuracy of this equation are 
made in the next and final section. 

9. VALUES OF SIMILARITY EXPONENTS 

'The one purely arbitrary feature of the matching procedure developed 
in $7, was the decision to link the coordinate system to the inner layer, 
and to ignore variations in the outer layer. An equally valid alternative 
would be to choose coordinates appropriate for the outer layer, and to 
assume the skin-friction to have the value required by Blasius's formula 
at the particular Reynolds number. The whole analysis would go through 
as before, and identical velocity profiles would be deduced. In place of 
(6.11) we should have, as in $5, 

2a 
l + M  

a =  -- , b = l ,  

as is easily verified. Thus if cc = 1-3, (6.11) gives 

while (9.1) gives 

Although the difference between (9.2) and (9.3) is not great, it would be 
satisfying to see how it arises. 

If R changes 
from that corresponding to M = 1.3 at x = xA, to that corresponding to 
cc = 1.4 at x = x B ,  then approximately, from table 1, 

u = - 1.15, b = 1.03, (9.2) 

u = - 1.13, b = 1. (9.3) 

For M = 1.3, equation (9.2) shows that R cc X - O ' ~ ~ .  

Incidentally, this figure strikingly illustrates the slowness of the change in 
velocity profile. Consider a wall jet which has developed from x, to xB. 
On the theory of $7, its profile at xu is still that appropriate to a = 1.3. 
However, in fact the profile should be that corresponding to M = 1.4, with 
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the scales off and y~ suitably adjusted. If the maximum velocity and width 
of the outer layer are u1.3 and 81.3 for cr = 1.3, and ul.4 and 81,4 for cr = 1.4, 
then if the adjustment is made so that the mass flux, and also the velocity 
gradient in the inner layer (for which the solution is known to be accurate), 
are unchanged, a rough calculation shows that, approximately, 

1 (9.5) 
ul.4/ul.3 = 1.12 = (200000)0’01, 

81.4p1.3 = 0.84 = (200000)-0~0~5. J 
Adding these contributions from the changing profile to the values of (9.2), 
we have as revised estimates of the similarity exponents 

The  fact that these figures are precisely intermediate between (9.2) and (9.3) 
must be considered entirely fortuitous, in view of the roughness of the 
calculations, but the order of magnitude of the differences arising from the 
alternative choice of coordinates is satisfactorily explained. Physically, 
we may argue from (7.1), that, with cr constant, the velocity gradient in the 
outer layer becomes progressively too small as x increases, and hence an 
adjustment qualitatively similar to (9.5) is required. For the alternative 
approach, leading to (9.1), the velocity gradient in the inner layer becomes 
progressively too steep as x increases, and so necessitates an adjustment 
in the opposite direction. 

The  discrepancies between (6.11) and (9.1) are probably no larger than 
other errors inherent in the whole method of analysis, but in practice the 
mean of the two might well be adopted as the best prediction of our theory. 
These mean values are also given in table 1. 

For a plane turbulent wall jet, the analysis of the last sections all applies 
unchanged, with appropriately modified values of the similarity exponents. 
Equation (6.11) is replaced by 

a = -1.14, b = 1.015. (9.6) 

4 + 4 x  m’ 5 +4cr’ 
b = -  4cr a =  - 

and (9.1) is replaced by 
cr a = - -  b =  1. 1 +a’ 

(9.7) 

The  value of the constant K must be determined afresh, as there is no reason 
to suppose that it still has the same value as that for a radial wall jet. 
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